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The solution for the stability of ballooning mode equations in tokamaks with hot particles 
is presented. The system of equations requires solving a combined set of differential and 
integral equations accounting for the detailed hot particle orbits. Special techniques are 
developed to describe the equilibrium, the linear set of matrix equations, and the boundary 
conditions. A modified WKB technique is developed to treat the boundary conditions. A 
detailed discussion is given of how boundary conditions are determined. We rigorously show 
why. in some cases, the eigenfunction may be exponentially growing with an outgoing group 
velocity. Sample results are presented. ‘D 1987 Academic Press, Inc. 

I. INTRODUCTION 

A frequently proposed concept for improving plasma confinement is to use 
energetic particles. This idea has been studied in such varied devices as astron 
[1, 23, field-reversed $-pinch [3], Elmo [4], bumpy Tori [S, 61, and mirror 
machines [7]. The currents produced by such particles form min-B wells that 
would produce MHD stability if the hot particles were completely decoupled from 
the background plasma [8-lo]. However, it is important to ascertain how energetic 
the hot particles need to be in order for them to behave in a manner that is different 
from an MHD fluid, and whether or not there are additional modes of oscillation 
that can cause instability. 

To answer some aspects of these questions for hot particles in tokamaks, we have 
developed a numerical method for solving the integral equation for ballooning 
modes in tokamaks in the high bounce frequency limit. The use of the ballooning 
mode representation was pioneered by Roberts and Taylor [ll], who showed that 
with localized modes close to a single field line, there is a duality in considering the 
structure of an MHD-like mode. Traditionally, emphasizing the structure paraliel 
to tieid line has been called the ballooning mode representation. Formai. 
mathematical descriptions for treating the ballooning representations in toroidal 
geometry have been presented by Glasser [ 121, Lee and Van Dam [13], and 
Connor et al. [14]. 
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Integral equations for ballooning-like modes in tokamaks have been studied 
extensively for trapped particle instabilities [15, 161. Only recently has the hot 
particle problem been of interest. Some numerical and analytic theories have been 
presented [17-221. We have developed a code that can treat arbitrary hot particle 
distribution functions; our inversion technique does not depend on knowing 
beforehand the form of the perturbed eigenfunctions. 

In solving the integro-differential set of equations, several conceptual physical 
and numerical issues must solved. They are as follows: (1) An equilibrium model is 
needed; it is found by using a method developed by Rosenbluth et al. [lo] that 
considers a circular flux surface under the assumption of large aspect ratio. (2) 
Boundary conditions are required for the linearized equations. We show that out- 
going wave boundary conditions should be invoked. We introduce a modified 
WKB method in order to apply the boundary conditions accurately and efficiently. 
The outgoing waves give a dissipative mechanism that is crucial to the stability 
properties of the problem. The WKB method allows accurate numerical solutions 
to be obtained by integrating only over a few (2-3) poloidal periods. (3) The 
question of mode localization is a crucial aspect of this study. For many 
equilibrium parameters we find that modes do not localize spatially. In such cases 
we show that stability requires an investigation of the continuous spectrum which is 
the wave spectrum found by studying the operator in the limit that the distance 
along a field line becomes large. In the Appendix we generalize the method used for 
describing convective and absolute instabilities to show that if the continuous 
spectrum can be stablized, the global eigenmodes will be spatially localized. 

The primary purpose of this paper is to present the numerical techniques and the 
theory needed to obtain correct numerical solutions. A more complete study of the 
physical issues will be presented elsewhere [20, 211. 

II. BASIC EQUATIONS 

The equations that we wil use to describe electromagnetic perturbations arising 
in tokamak and mirror systems containing energetic particles have been derived by 
several authors [23,24]. We expect mode frequencies to be on the order of the 
energetic particle magnetic drift frequency. Thus, we can assume that the energetic 
particle bounce frequency ob is large relative to the mode frequency and the 
magnetic drift frequency if ob > od. Their ratio can be written approximately as 

cob 1 II,, r R 
------3 
wd Iv,a,L 

where I is the toroidal mode number, v,, /u, is the ratio of the parallel to perpen- 
dicular velocities for the trapped species, uL is a typical Larmor radius, r is the 
radial scale length for the device, and R is the radius of curvature of its magnetic 
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mirror field (the major radius). L representes the typical length of a bounce orbit 
Because of the appearance of r/aL here, the large bounce frequency approximation 
is excellent for electrons, and quite accurate for ions if IL 10. 

We will take as our starting point the high-mode-number (i.e., short perpen- 
dicular wavelength) limit of the expression for the quadratic form obtained by 
Antonsen and Lee [23]. In this limit the most unstable modes vary rapidly across 
the field lines and slowly along them. They arrived at this result from the linearized 
guiding center equations of motion derived from the bounce-averaged drift-kinetic 
equation. For simplicity, we do not consider here the equilibrium electrostatic 
potential effect included in their treatment. 

The magnetic field displacement vector is written in the form 
4 = E(X) exp[iS(x)], where S is the eikonal with 6. VS = 0; it provides the short- 
wavelength behavior perpendicular to the magnetic field. s is a slowly varying 
amplitude; it can be decomposed into two components: t= X6 x VS+ ITS, To 
prevent the compressional term from dominating, we must have Y< X Then 

o---cc)* aF‘ 
w-(o,)~E ii =o, (1) 

a=l+ p, - p,, 1 ap, 
B” r=l+-- 

B aB ’ 

1 Gxvs 
e=B’ K=m6, 

6 = B/B, Q,=B,,+&VB, 

B,,=kVx(~xB), o=v-VBg-, 
B P.VF 

p = mini, o*=.-. 
l-2-’ 

s2 = qB/m = cyclotron frequency, and rn and q are the particle mass and charge, 
respectively. 

To get a form appropriate for a three-component plasma such as in EBT, the 
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kinetic term for the core electrons and ions is replaced by the conventional form in 
which o-o,~Bo,. The term 

W*i= 
-B t.VP, 
--Ix- mini j Llj 

representing the ion diamagnetic drift has been included in the quadratic form. For 
example, this term follows from the work of Catto, Hastie, and Connor [24] if 
p = 2(P, + P,,)/B2 is sufficiently small. The subscript i refers to ions. 

We now set d = XB in Eq. (1) and vary with respect to 4* and Qz so that 

(2) 

and 

‘d3v 
w--o* aF, 

w- (U,,)~~((L’;~.K~+I(Q~)), (3) 

where p represents the perturbed electrostatic potential and QL is the parallel (to 
the equilibrium field) perturbed magnetic field in the Lagrangian frame. v! = B’/p 
is the square of the Alfvtn velocity. The subscript h refers to the energetic species. 

Since the energetic particles are trapped in a rather shallow magnetic well, their 
parallel pressures and velocities are much smaller than the perpendicular values. In 
particular, it can be shown that vi - (r/R) vf (r and R are the minor and major 
radii of the torus, respectively). These quantities then enter into the equation a fac- 
tor of order -r/R smaller than the dominant terms. Thus, we can reasonably 
neglect the parallel velocity and pressure effects for the trapped particles, resulting 
in a significantly simplified set of equations, 

B v 0 IVSI' . [~(B.v~~)]+~B,.K(Q,-~~B~.K) 

+ &.K 0 c . VP, + c9P,,,c 
T (4) 

(5) 
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Because of the remaining integral term in Eq. (5), these equations are still very 
difficult to solve analytically. However, some progress can be made if the trapped 
particles are assumed to be deeply trapped [lo, 191; that is, the bounce avarages 
cover only a short distance along the field line, and we can assume for some 
variable K ( CI > N a(s = so), where s0 is the center point of the bounce trajectory. 
Also, evaluating the velocity integral can be facilitated if it is appropriate to assume 
Q < (od). This procedure was implemented by Rosenbluth et al. [lo] and by 
Connor ei al. [17] to obtain a simplfied numerical model. Their results indicated 
that the energetic particles could indeed stabilize the MHD-like ballooning modes 
(if one assumes o G (od)) and allow access to the second-stability region [25]. 
Since we seek to treat modes having o 5 (wd) (the precessional drift-resonant 
instability) as well as the more familiar case in which (ri G (LL~~ ), their low fre- 
quency assumption is not valid. We would also like to be able to consider dis- 
tribution functions containing large percentages of nearly marginally trapped par- 
ticles (sloshing ion distributions); thus, the deeply trapped approximation is not 
applicable either. As a result, we must numerically solve Eqs. (4) and (5) as they are 
written above. 

Some simplicity is achieved by considering a large aspect ratio equihbrlum in 
which the flux surfaces are shifted circles [lo]. If the plasma beta is small with a 
sharp gradient, reasonable results can be obtained analytically for the various 
equilibrium quantities needed. We write the magnetic field in the Clebsch forma, 
B = V$ x V/3. $ is the solution of the anisotropic equilibrium equation derived bj 
Grad [X]. 

where R is the cylindrical coordinate representing the major radius of the torus, 
C = (oRI?,)‘/ (BT is the toroidal component of the magnetic held; note that G is a 
function of $ only), and 0 = 1 + (P, - P,,)/B2. We will use a flux coordinate system 
(I/J, 3, <) to describe the equilibrium. The eikonal S is usually written in the form 

S=n(q$-0, i-7: \‘I 

with 

we assume VS = nVp, although S is in general also a function of I/. To determine 
and expression for k, = V’S, we need to calculate V9 so that we can use Eq. (7). 
Equivalently, we can calculate VP. Clearly, 
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and it can be shown [IO] that A is given by 

iv 

where B, is the poloidal component of the magnetic field. 
To solve the equilibrium equation, we will assume large aspect ratio (r/R 4 l), 

low-p (j3 < l), and localized gradients [A s (V In P) -’ < r}, so that the flux surfaces 
are, to first order in E = r/R, shifted circles [lo]. We use a coordinate system in 
which R = R, + Y cos 9 and expand $ in powers of E: 

44r, 9) = $o(r) + ICllir, 9) + . . . . (10) 

In this coordinate system, B, 2 B&l - E cos 9), B, = B,,(r) + O(E), B,, = 

(@oldrYRo~ &I& N O(E), and the safety factor q = rB,/R,B,, + O(E). First, we 
note that the term VI/~ V In 0 in Eq. (6) is NE’ smaller than (R2/o) aP,,/a$, so that 
it may be dropped. Except in G(II/), we can set 0 = 1 due to the low-p and short 
gradient scale length approximations. Using these results, we can now write 

R2V.R-‘V$= -d(G+RiP,)-2rR,cos$dP’ 
w w 

aPllh w + O(E2). (11) 

The subscript c refers to the isotropic core plasma and h to the energetic trapped 
component. We add and subtract 

apIIh _ 1 
s 

‘=d$- apllh -=- 
a* 2~ o a* 

in Eq. (11); it will be seen later that this allows Ic/t(r, 9) to be periodic in 9. Thus, 

R2V.(R-2V~)= -d(G+R;P,)-R+ apIlh 
a* a$ 

(12) 

where we have assumed that dP,,,,/a$ -&JP,/il$; this follows from the trapped 
particle nature of the hot species with the understanding that Plh UP,. 
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We define the lowest-order part of the right-hand side of Eq. (12): 

il 

“,lh J(Q)=$(G+R:P,)+R:- 
a$ . 

Then, 

R2V. (R-2Vlfq = -J(lc/o), (13) 

and 

It can be shown that the last term in Eq. (14) is smaller than the others by a factor 
of A/r, and can be neglected in our approximation. Using similar orderings, we find 
that 

Then, from Eqs. (9), (14), and (15), 

i=&$(3--9,)++$$$(sin9-sinSk) 
PO 0 0 PO 

B,,r 9 
+- 

ROB;, s 
ffY 2 (Pllh - P,,& 

w 

(15) 

(16) 

here, 9, is introduced as the origin of the integrations and represents the radial 
wavenumber. En tokamak geometry, the variable along the field line, 9, is extended 
to cover the range - co < 9 < + co. It will be convenient to write the trapped 
particle pressure functions in the form 

Pllh($) = 2p,d$)(r/&J ~~~(9) (17) 

and 

with pL($ = 0) = 1, P,,,~( 19 mod 27~1 > &,) - 0, and p($) containing all of the radial 
dependence. It foliows that 

.lVgJt = : { S( 9 - Sk) - a,(sin 9 - sin 9,) - dg(S) -g(Qk)l> r^+ U(E), (19) 
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2r2 ap, 

2r.2 - ap - 
OIh- -GPLha@ 

0<~<9, 

=( ) y p(9,) -p(2n- 9), 2~-I!&JJ<27T, 

and 

Finally, 

VP=; [S+h(9) r”], (20) 

with h(9)=S(9-9,)-a,(sin9-sina,)-cc,[g($)-g(9,)]. 
The next section of this chapter will examine trapped particle distributions that 

are peaked near 9 = 0. We will model this with the distribution function 

where 

Bmin = B (9 = 0), B, = B (9 = Go), and 9, represents the maximum extent of the hot 
particles in 9 mod 271. It can then be shown that 

( I- B/B, j3’*( 1 + 4BJB) 
pL(9) = (1 - B,i,/B,)3’2( I+ 4B,/B,;,)’ 
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and 

p,,(+R,B, 
(1 - B/BJ5;* 

Y B (1 - B,i,/B,)3’2(1 $4B,/B,i,)‘ 

Note that to within factors of order E, ~~(3) N (cos 3 - cos 30)3’2/( I- cos 30)3’2= 
We will also consider two “sloshing” distributions in which p,(3) peaks near 3,. 

The first one again contains only trapped particles and is given by 

where 

so that p,(3) = C(S)/C(O). Now, p,(3) and p,,(3) cannot be calculated analytically. 
Instead, they are computed numerically on a grid at the beginning of the program: 
and values at arbitrary 3 are obtained by interpolation. 

We also consider a distribution containing circulating as well as trapped 
energetic particles: 

where in this case 

C(3) = B$‘* lBc” 
0 

and 30 = n. The normalization factor aF is the same as for Eq. (22). In the limit of 
high transit frequency (analogous to the bounce frequency for trapped particles), 
the passing particles do not contribute to the kinetic term [27]. Thus, the magnetic 
moment integral in Eq. (3) ranges from E/B, to E/B in all cases so that oniy 
trapped particles are included. 

The parameter Ad in Eqs. (22) and (23) allows the shape of the perpendicular 
pressure profile to be varied continuously from one peaking at 3 = 0 (A2 % 1 j to 
one peaking near 3 = 3, (Al @ 1 j. These sloshing distributions are introduced in an 
attempt to stabilize the high frequency (w 5 (wd)) precessional mode. The physical 

%1,73:1-3 
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motivation for this choice and the detailed results of the investigation will be 
reported elsewhere [21, 221. 

Before inserting the equilibrium functions into Eqs. (4) and (5), we note that 
numerical solution of the equations will be simplified if we change to new variables, 

note that 6Q = 0 in regions where there are no energetic particies. Thus, Eqs. (4) 
and (5) become 

= _ vRoaW) 
(1 + h2)“2 sQy (24) 

and 

rhQ = mh d3v 
s mmp<“w:, p2z (SQ) +-& 0 I D(3?(q,, 

,,(qI+h) -)I’ (25) 

where D(9) = cos 3 + h(9) sin 3. We write Oar as 

a*i= -m*o zi mh “c++- 
I 

i!+l ccr, - 2aq2~(3)] + ahp:(3,>) 

**o nVA V.4 
G-y-4& 

CBA=-, 
qRo 

with Zj the atomic number of species j. 
To solve Eqs. (24) and (25), we expand SQ and 4, 

SQ = f qrfi(3), 
I= 1 

I=1 

with 

(26) 

(27) 

h(3)=cos[(21-1)$-J 191<3o 9=3mod271. 
3 

E 0, PI> 30 
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& and the 4;s are found by itegrating 

Do, h, = 0, 

I5 

(23) 

(29) 

over each 27t region in the range of 9, 0 < 9 < CD. Equation (23) is integrated with 
#h = 4 and d&,/d9 = dqh/dSr at the beginning of an integration over one period. The 
same is done with Eq. (29), but c$[ = 0 and dcj,/dS = 0 are employed as initial values. 

Once the functional forms of & and d1 are known, they can be used to calculate 
the matrix elements of a set of linear equations for the 4;s obtained from Eq. (25). 
Namely, 

N 
1 q&r = Br, 

I= 1 

where we have defined 

9 
Am- l---E ’ 

~&!!s= l-ECOSQO W 1 - l-ECOSI 
E 1 --E cos[$,(ij]' 

wdO = -3 rRC2, 

Q, = hot particle cyclotron frequency, 

(32) 

1 a 
s 

dzz7’2e ~ I 



16 STOTLER AND BERK 

We also calculate 

where 

is the definition of the plama dispersion function [28] valid for Im [ > 0; its 
analytic continuation is used for Im [ d O.f(A) and I, arise in calculating (wd)/odO 
and can be expressed as 

with 

I, = 

13 = 

z4 = 

+ fi W(k) - W)l, 

--, 4 ,/h [ (k2 - 1) K(k) + E(k)], 

0 + 3 [( 1 - k2) K(k) + (2k2 - 1) E(k)], 

z 9~ d9 sin Sgg(9) g/r 
5 

= 
s / 
0 ~cos9-cos9,’ 

(33) 

and 
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E(k) and K(k) are the elliptic integrals defined by 

E(k) = ja.* dy( 1 - k2 sin* ::)I”, 
0 

and 

where k = sin(3,/2). The arrows above indicate that the closed-form expression are 
valid only in the limit D = T = 1. In general, these quantities must be computed 
numerically. 

We now describe the boundary conditions to be applied at infinity. The 
integrations of Eqs. (24) and (25) are started at some large value of 3, 3,, = 2x.37, 

~2 = integer. The secular term in h(3) is valuated at 3,,, 

h(3)1S(3,-3,)-cr,(sin 3-sin3k)-~h[g(3)-g(3k)], (34) 

a valid approximation for 13 - 3,1 < 27~ and 3, % 2n. Thus, with an error or order 
U3”,, the coefficients of the differential equation (24) are purely periodic so that 
Floquet theory [29] can be applied; the solutions must be of the form 

4(3) = J(3) eik3, (35) 

with &3) a function of period 27r, and k some complex constant. Note that k is 
actually a function of 3,, k(3,), as is the function J(3). However, in the limit 
Qm+m, k becomes a constant. This suggests an analogy with WKB theory in 
which the solution can be expressed in the form 

&3)=&3)exp ijgk(3’)d3’ 
[ 

where now 6 is roughly periodic with period 2~ and the changes over larger scale 
lengths. If we write 

j+k(3’)d3’= [3mk(3’)d3’+/’ k(3’)d3’, 
Y”, 

treat the first piece as a constant, and expand k(3’) about 3,, we get 

I (3 - 3m)’ dk(3 
3 k(3’)d3’~k(3,)~(3-3,)+ 2 

) 
--$- + . . . . 

& 
(36) 
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The first term is the piece we pick up in expressing d(9) as in Eq. (35) and provides 
a local approximaton to the global WKB-like solution at 9,. 

To calculate k, we first integrate Eqs. (24) and (25), using Eq. (34) for h(9), over 
9,pr9,-x to a,+ = 9, + rc starting with b($,,-) = 0, (d#/dJ?)(S,+) = 1, and 
label the resulting values at $,+, &i 3&Q,+) 4; = (&#/&)(9,,,+). Similarly, we 
integrate from a,+ -+ a,-, with $(ZJ,+) =O, d&$,,+)/d$=l to get &=d($,+) 
and 4; = dd($,+)/d$. Using the expression for 4 given in Eq. (35), it can be shown 
that 

W,)=$ 5 d2-d2 . i’( ’ 

and we actually obtain two values for k(9,). We will be interested in temporally 
growing modes, so a spatially damped response is generally appropriate, Im k > 0. 
We check to see that this choice also yields outgoing waves, Re(&/dk) > 0. These 
two criteria are usually compatible; if they are not, we need a special treatment, as 
discussed in Section IV and the Appendix. We can then find a value for d(ln #)/d9 
at a,,-, the boundary condition at infinity, where we need to begin the actual 
integrations. 

At this point, we reintroduce the secular term in h(9), and go through the 
procedure previously described to find d,,, the 4;s and 4;s over the range 
9 = (2m - 1) z to (2m - 3) n. This process is repeated until the origin is reached. We 
set Qk= 0 and look for even eigenmodes. That is, the boundary condition we 
enforce at 9 =0 is d(ln t+b)/dsI = 0. Odd eigenmodes could also be examined, if 
desired. The eigenfrequency w is obtained via a shooting technique. For given w, 
Eqs. (24) an (25) are integrated from 9 = 9, to 9 = 0; d(ln d)/d91 (9 = 0) is then a 
function of o. A zero of this function is sought with a secant method. Note that 
with CQ, = 0, Eq. (25) reduces to the standard MHD ballooning equation. For this 
reason, we often start at 01~ = 0 with a known value of o = iyMMHD and increase c+, in 
small steps using the previous root as a guess for the eigenfrequency at the next 
point. 

To demonstrate the effectiveness of the boundary conditions, we list in Table I 
the eigenfrequencies of three solutions to Eq. (24) with cli, = 0 for various values of 
m, where 9, = 2nm. For case (i), S = 1, E = r/R, = 0.2, and 01, = 0. This is an exam- 
ple of one of the discrete toroidal eigenmodes that appears in the shear Alfvtn con- 
tinuum when the effects of the variation of magnetic field strength along a field line 
are included. In particular, the l/v’, factor leads to a field line dependence 
l/v”, cc (1 + 2s cos 9) in the inertia term; these modes were discussed in detail by 
Cheng, Chen, and Chance [30]. Note that 52 =w/(o* is correct to four decimal 
places even if m = 1. In case (ii) we consider an MHD ballooning root with S = 0.6, 
E =0.2, and ~~,=0.8. With m = 2, we obtain five digits of accuracy and have Q 
correct for all digits computed here if m > 3. However, at smaller values of S, the 
eigenfunctions spread out in 9, and the level of accuracy drops somewhat to six- 
place accuracy. This is seen in case (iii), where S = 0.2, E = 0.2, and ~1, = 0.8. 
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TABLE I 

19 

m i ii ill 

1 0.54047205 0.371013301 0.147933291 
2 0.54053565 0.369011661 0.138770131 
3 0.54052609 0.369010261 0.138265041 
4 0.54052386 0.369010261 0.138236841 
5 0.54055287 0.369010261 0.138234752 

III. EXAMPLES FOR DEEPLY TRAPPED PARTICLES 

In this section we examine cases in which the particles are confined close to the 
minimum magnetic field region of the tokamak. For example, this is the sort of dis- 
tribution that would be introduced by near-perpendicular neutral beam injection. 
However, perpendicular injection on PDX [31] led to the “fishbone” oscillations 
[32] which appear to be due to a precessional drift resonance of the energetic par- 
ticles with the internal kink mode [33]. We will examine the effects these resonan- 
ces have on high-mode-number ballooning modes in addition to the impact of the 
energetic particles on the non-resonant MHD ballooning mode. 

Some of the parameters required to specify the problem will be fixed. Namely, we 
set S=O.6, 0[~=0.8, r/R,=0.2, r= r,+ A,/2, q=2, mi=m,, and qi=qh. These 
choices were made to aid comparisons with similar theoretical work published 
previously [17-191. The remaining parameters are &,, o,,/w,, and @h. They will 
be varied in a systematic fashion to allow us an understanding of how they affect 
the stability of the system. Note that only odo/uA involves the mode number rr. We 
can get an idea of what values are reasonable by using PDX-like parameters [31] 
to estimate wdO/wA and o.Jo,,. With Ti=3keV, r~~=3xlO~~crn-~, B=2T, 

zz (0.08) n (A); 

so that for n = 10 and T, = 120 keV, one obtains wdO/wA z 1. 
The ratio A,/r was an expansion parameter in the equilibrium calculation; thus 

we cannot allow it to be too large. In the limit of an infintely sharp gradient, we 
have A,/r --+ 0, P,, + 0, but ah # 0. Although unrealistic, this limit simplifies the 
equations significantly. In most instances, we will simply take A,jr = 0 and 
LL).+Jw~~ = 0. Unlike procedures employed elsewhere [ 17-193, we will raise c+, from 
zero, keeping ~1, constant. 
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Figures 1 and 2 show the imaginary and real parts of the eigenfrequency, respec- 
tively, as a,, is varied for four values of od,,/oA and So= 0.895: namely, 
wdO/wA = (i) 0.01, (ii) 0.4, (iii) 0.7, and (iv) 2.0. Since wd,,/oA is proportional to the 
energetic particle temperature, and clh is proportional to the energetic particle 
pressure, varying CQ, at constant wdO/oA implies a change in the hot species density. 
Case (i) representes the introduction of very low energy, MHD-like, trapped par- 
ticles. Kinetic effects are small in this case. The increase in the growth rate is due to 
the increased pressure available to drive the instability; the real part of the fre- 
quency is hardly affected at all. Note that the use of the high bounce frequency 
ordering may be inappropriate for this case; it is included here for purposes of 
comparison. 

Curve (ii) of Figs. 1 and 2 describes the effects of particles with significantly more 
energy. Their stabilizing effect is seen at small CQ,, but is overcome by the destabiliz- 
ing influence of the drift resonance (Re o N wd ) at larger values. Consequently, 
Im w increases with cl,, for cl,, 2 1.3, and Re w becomes significant compared to od. 
By further increasing odO/oA [curve (iii)], the distinction between these two modes 
becomes clearer. First, we see that we can completely stabilize the MHD ballooning 
mode (Re cc) < od) just before the higher-frequency precessional mode becomes 
unstable. Note the difference in the real parts of the frequencies for these two modes 
at clh = 1.7. 

Finally, in case (iv) we consider very high energy particles (using the PDX values 
with a mode number, n = 10, this corresponds to T,, 2: 240 keV). We can again 
completely stabilize the low-frequency root, but now there is some distance in ah 
before the other mode becomes unstable. The existence of such a stable window has 
been noted by others [ 16, 171. However, instabilities that we have not considered 
here may be present inside this window [20,29]. 

In those situations where o < od and 9,s TC/~, it can be seen that the con- 
tribution arising from the kinetic term, Eq. (25), almost exactly cancels the hot par- 
ticle contribution to the instability drive term in Eq. (24) [17, 191. Furthermore, as 
long as c(, is nonzero and 4 (9 = 0) is a local maximum of the eigenfunction, the 
portion of the kinetic contribution which is not cancelled by the fluid term propor- 
tional to CQ, counteracts the destabilizing influence of the core pressure piece of the 
instability drive. Due to the stabilizing shear effects present in a tokamak, the 
requirements on clh to do this effectively are not as strict as in a shear-free system 
such as EBT, where the energetic particle pressure gradient must be sufficient to 
reverse the local magnetic field gradient. 

The high-frequency (o 5 u,,) instability is introduced as a result of the negative 
energy character of the hot particle precessional mode [23] arising out of the 
kinetic term in Eq. (25). By coupling this mode to positive energy waves or positive 
dissipation, the negative energy wave can be destabilized; here, the outgoing-wave 
boundary condition plays the part of positive dissipation [34]. The strength of the 
coupling is proportional to cl,, (SQ cc ol,); so, the growth rate of this mode tends to 
increase as the hot particle pressure gradient is raised. 

However, at the same time, the resonant character of the kinetic term provides a 
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FIG. 1. Imaginary part of the eigenvalue plotted as a function of r*h for four values of the parameter 
wdO/oA: (i) wdoi’oA = 0.01, (ii) w,Jw~ = 0.4, (iii) odO/oh = 0.7, and (iv) wdObA = 2. 
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FIG. 2. Real part of the eigenvalue plotted as a function of ah for four values of the parameter 
odO/wA: (i) wdo/wa = 0.01, (ii) ~ID~,,/w~ = 0.7, (iii) w.&w,~ = 0.7. and (iv) odu/w, = 2. 
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source of negative dissipation since aF/atj < 0 in the region being studied [35]. The 
stability of the high-frequency mode is determined by the balance between the 
positive and negative dissipation. At low energetic particle temperatures, the former 
depending mostly on properties of the background plasma, prevails and gives rise 
to instability if ah is large enough. By raising the energy of the trapped particles, the 
balance is altered favorably, causing a drop in or even a disappearance of the 
growth rate. 

IV. STUDY OF THE CONTINUOUS SPECTRUM 

The study of deeply trapped hot particle distributions did not produce any 
incompatibility in the demands that boundary conditions produce localized modes 
(i.e., lim, _ o. (( Im k)/9) > 0) and outgoing waves (lim, 8, _ oo Re( 9/(&@)) > 0. 
However, when sloshing particle distributions are considered, nonlocalized modes 
are found. For example, when the distribution function in Eq. (22) is chosen, the 
search for eigenvalues gives the results shown in Fig. 3. The parameters for curve (i) 
are Al = 0.02, 9, = 3.04, odo/oA = 0.636, and o,J = wdO = 0; in curve (ii), they are 
the same except that w*~/w~,= 0.55. Eigenvalues are obained for CQ, < CQ,~~; in this 
range the two boundary conditions stated above are compatible [ar,cr rr 1.2 for 
curve (i) and c~~,~~‘v 2.2 for curve (ii); the apparent touching of the two curves at 
CQ, = 1.2 is accidental]. However, when cl,, > CX,,~~, the eigenmode no longer satisfies 
the outgoing wave and mode localization conditions simultaneously. 
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FIG. 3. Imaginary part of the eigenvalue plotted as a function of q, for Al = 0.02, So = 3.04, and 
(i\ o~*~/w~~ = 0, (ii) w,~/w~~ =0.55. 
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From physical considerations we expect that the outgoing wave condition, which 
is amplifying at infinity, is the physically correct condition. This statement will be 
further justified below. However, instead of studying the difficult problem of finding 
waves that amplify at infinity (this procedure is sensitive to small numerical errors), 
we can study the stability of the continuum modes directly. These modes have the 
property that at infinity the wavenumber k is purely real. It can be shown that if the 
continuum modes are stable, then an unstable global mode must be spatially 
localized. But if the continuum modes are unstable, we shall show that it is possible 
for the global modes to be spatially amplifying at infinity [34]. Thus, if one is 
attempting to find a stable set of equilibrium parameters, one must first stabilize the 
continuous spectrum, and then examine the stability of the global eigenmodes. 

Before discussing the continuum modes, we will justify why spatially growing 
outgoing waves at infinity can be an appropriate boundary condition for discrete 
eigenmodes. First of all, for simplification let us consider a system, with, say, an 
independent variable X, that is described by a linear spatially inhomogeneous 
integral operator 62: that asymptotically approaches a linear spatially 
homogeneous operator; s$! as 1x1 -+ CS. The eigenvalue problem for an eigen- 
function 4i(x) e-‘“’ (the exp( -iot) dependence of the eigenfunction is guaranteed 
from the linearity of the equation) is determined from the solution of the equation 

This equation can be rewritten as 

where 

Now, using Eq. (38), S:y has the property that it vanishes as 1.~1 + CC as then 
6::l+Dxr. ISH Thus S;I;1 can be viewed as a spatially bounded source function of fre- 
quency CJ’ that excites a physical system characterized by a spatially homogeneous 
operator D,, . “SH We shall assume that this excitation and the solution is consistent 
with causality constraints that typically arise in initial value problems (with 
causality taken into account the solution d;(~, f) exp( - iot) is valid only as I --, JL~ ). 

The eigenfunctions of fiS,y are plane waves 

qhSH = exp(ik.u - iwr) 141 j 

with k real. However, if the operator D,,, SH leads to unstable waves, then solutions 
with Im w > 0 can be found with real k. If in such a system, excitation is supplied 
by a localized source (such as in Eq. (40)), with another frequency, say oo2 then 
spatially amplifying solutions of the form of Eq. (41) with x Im k < 0 are possible as 
1x1 + OZ. These solutions are the spatially asymptotic form of convective and 
absolute waves [36, 371. Thus, d,(x) -+ exp(ikx) with, in general, k complex. The 
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exact criterion for when one has spatially amplifying waves is somewhat more 
complicated than stated above, and is discussed in detail in the Appendix and 
summarized in the conclusion. A simplified criterion that is usually correct will be 
stated shortly in this section. 

For the problem considered in this paper we have to modify our arguments 
somewhat to pose the boundary value problem; our operator defined in Eqs. (4) 
and (5) has the same property as the class of operators 6-z: that asymptotically 
approach a spatially periodic operator as the independent vaiiable 1x1 + co, i.e., 

From the Floquet theorem [25], the eigenfunctions of the spatially periodic 
operator, Bz:, are of the form 

bk(x) exp( - iot + ikx), (42) 

where 4,J-y) is a periodic function and k is real. Now, as with the case in 
Eqs. (38)-(40), the eigenvalue problem for the eigenfunction & can be formulated 
as 

with 

As before, Szy] can be viewed as a spatially bounded source function. In the Appen- 
dix we show that &(x) will asymptotically approach the form of Eq. (42) with k 
complex and perhaps even with spatial amplification (X Im k < 0) if Im o > 0 for k 
real. The precise criterion for finding spatially amplifying waves is given in the 
Appendix and summarized in the Conclusion, with a simplified criterion given 
below. 

Now, using the results of the Appendix, we conclude the following. First of all, 
suppose the operator ds: approaches a spatially homogeneous operator for large 
1x1, and one finds Im o(k) > 0 for a real band in k. We classify such a case as con- 
tinuum instability. Asymptotically, for large 1x1, this instability can be convective or 
absolute [36, 371. In a convective instability the response to a spatially localized, 
temporally bounded source will be spatially growing but temporally bounded at a 
fixed spatial point. The typical response for x large and positive is 
exp[ikx- h(k) t] with w(k) real, Re(Jw/ak) > 0, and Im k < 0 (do/dk = ug = group 
velocity). In an absolute instability the response at a given spatial point is unboun- 
ded in time. The characteristic frequency response of an absolute instability occurs 
where &o(k)/iTk = 0 (or equivalently where k has a double root as a function of w) 
and Im k d 0 as x + + co. Furthermore, if an oscillator is applied at an external 
complex frequency o0 with Im o0 > Im w(k j for all real k, then the spatial response 
of waves propagating away from the source decays, i.e., as x -+ co the perturbed 
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response is of the form exp[ik(o,) t], with Im k(w,)>O and Re u,>O. lf 
Im o0 < Im o(k), then k should be chosen so that x Re ug > 0, and this can lead to 
spatially amplifying solutions where x Im k < 0 (these statements are a somewhat 
simplified version of the exact criterion given in the Appendix). For a discrete eigen- 
value wO, the eigenfunction at infinity has the same structure as the response to a 
bounded externally imposed oscillator. 

In a periodic equilibrium, the eigenfunctions of the system are of the form 

q5k(~) exp[ik.u- iw(k) t17 

with k a real continuous parameter and 4,J.x) a periodic function of X. In the 
Appendix we show that the nature of convective and absolute instabilities and their 
amplification and attenuation response to externally spatially bounded oscillators 
are entirely the same for periodic systems as for spatially homogeneous systems 
Thus, the criteria for selecting the boundary conditions at infinity is the same as the 
asymptotically spatially homogeneous case. 

Now, we apply the above discussion to the specific problem of this paper. We 
note that the asymptotic operator that we are considering (now the independent 
variable is f3) at large 9 in Eqs. (24) and (25) is spatially periodic. Thus, this 
operator is in the class of operators having Floquet-type eigenfunctions, and we can 
classify the continuum modes as being convectively or absolutely unstable. We 
observe that in attempting to find a global eigenfunctions of Eqs. (4) and (5) with a 
discrete eigenvalue, choosing a guess w =wO is equivalent to applying to the 
asymptotic operator a source with a frequency oO. If Im w0 > Im w(k) for real k, we 
are guaranteed a response as 9 + co in which the conditions Im k > 0 and Re vg > 8 
are compatible. However, if Im w0 < Im o(k) for some k, there need not be a com- 
patibility of the two types of boundary conditions. By observing the response of a 
convective instability to a localized source as we analyze in the Appendix, we can. 
ascertain that the boundary condition Re ~1~ > 0 as 9 -+ gr, is the correct one (this 

criterion is strictly correct only if Im k << Re kj. 
There may be some criticism of the form of eigenfunction and eigenvalue 

we are considering. Our eigenvalues that are obtained by our procedure are 
somewhat analogous to the classic eigenvalues giving rise to Landau damping [38]. 
The most narrowly defined eigenvalue problem gives rise to the continuum Case- 
Van Kampen modes [39,40], and the Landau solution is a superposition of 
Case-Van Kampen modes. Nonetheless, the Landau solution is a commonly 
accepted and useful formulation of the eigenvaue problem. Another form of 
criticism is that the eigenfunction of a tokamak does not really go to a spatially 
remote region, but continually returns to the same place because of spatial 
periodicity in the toroidal and poloidal directions. Then an amplifying wave would 

eventually nonlinearly saturate, giving rise to an entirely different response than the 
linear theory prediction. To respond to this point, we note that the operator in 
Eqs. (4))(5) is in fact physically incomplete in the limit of large 8. In a more exact 
ballooning mode theory, where the Larmor radius is finite, Larmor radius effects 
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profoundly change the nature of the solution at infinity. As the radial wavenumber 
continually increases in a system with magnetic shear, when all the finite Larmor 
radius effects are taken into account the mode ultimately propagates to a region 
which is locally stable (i.e., the WKB theory along the field line is stable for real k). 
There is an implicit assumption in our formulation that the solution between the 
asymptotically far region described by Eqs. (4) and (5 j and the even further outer 
region where plane waves are locally stable, can be described by a WKB theory 
along the field lines that does not give rise to additional wave reflection. Further, 
investigations of the detailed problem may be needed to confirm this assumption. 
Numerical work in a related problem where amplifying outgoing waves were taken 
in the region that can be described by WKB theory, but where local stabilization 
occurs at spatial regions yet further away, confirmed that the boundary condition 
was accurate if the local WKB theory did not fail in the intermediate region [41]. 

In any event, even if one refuses to accept the spatially amplifying eigenfunctions 
of Eqs. (4) and (5) as being physically or mathematically acceptable because of the 
uncertainty of whether WKB theory always applies where these equations fail, or 
for other reasons, the need to examine the stability of the continuum solutions of 
Eqs. (4) and (5) is still valid. If the continum solutions are stable, there is no 
problem in using conventional localized boundary conditions for ballooning modes. 
If they are unstable, we know we have an unstable continuous spectrum, as well as 
a possible discrete spectrum with lower growth rates, with spatial amplification at 
large distances along the field line. Because of the spatial amplification, this discrete 
mode may be somewhat difficult to determine numerically. However, the stability 
search is simplilied by examining the eigenvalues for the continuous spectrum of the 
asymptotic operator. If it is possible to alter the parameters so that the continuous 
spectrum of the asymptotic operator is completely stable, then we are guaranteed 
that an unstable global eigenfunction must be localized in space. Thus, in order to 
find parameters that completely stabilize the system, it is first necessary to stabilize 
the set of asymptotic equations. 

The numerical search of the continuous spectrum was performed for the two 
sloshing ion distributions given in Eqs.(22) and (23). The search for eigenvalues is 
made as follows. We look for eigenfunctions of Eqs. (24) and (25) in the limit 
3 -+ 00. In this case, the asymptotic form of the governing equations is 

and 

where for simplicity we have neglected 2s cos 3 and coei in the inertia term. We note 
from the symmetry of these equations that coupling between 4 and SQ only occurs 
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if 4 is odd and SQ is even. The symmetry also implies that o( -k) = wili- 1 
and w(k + 1) = o(k). From these conditions it follows that &~(k)/c’k = 0 for 
2k = integer. We also observe that two independent solutions for d are obtained by 
construction of #i(S) and &(Q) with the boundary conditions 

From the symmetry of Eq. (43), it is clear that (p,(5) = -(p,(--3) and dq,(9);‘&= 
&J -3)/d3. Now, an eigenfunction (p(9) of the system must have the properties 

d5 + 2x)= (p(3) exp(2&), ~i3+2n)=~(9)eXpi2siit) 

and 

40 = (P,(3) + ~~,(3) = (P,(3) + -4ip,i -3). 

It is straightforward to show that A = exp( -27cik) and cp!(~) = cos(27cli). Thus, in 
searching for the eigenvalues w(k) we iterate as follows. We guess a value for w, 
integrate Eqs. (24) and (25) in the limit 12 + YZ with the boundary condition 
ipic-7rr)=o, dv,,(-7r)/d3= 1 to 3=71, and alter CJ until the condition 
cp,(~) = cos 2rrk is fulfilled. 

In this search, we find that these continuum modes are unstable. The most 
unstable modes for the distribution function in Eq. (22) are at the pinch point k = 0, 
while the most unstable modes for the distribution function in Eq. (23) are at the 
pinch point k=+. 

In Fig. 4 we show a plot of Im o/o, = ymaX for the k=O mode as the parameter 
02 in Eq. (22) is varied. Other parameters here are cl,, = 1.52, ~~~~~~ = 0.636. and 
3, = 3.04. The reduction in growth rate at small values of A,? is the result of a 
decreasing contribution to the kinetic integral in Eq. (25) by the resonant 
(w*(md) >O) particles that give the equation a nonzero imaginary part and 
therefore a complex o. Unfortunately, the value of Al required to stabilize the .& = 0 
continuum mode is too small to give rise to a physically realizable distribution. 

We present the results of calculating o for the k = + mode as a function of ah in 
Fig. 5 using the distribution in Eq. (23). In this case, we have set Ai = 0.02, 
odD/oA = 5, and cc, = 0. An interesting feature of this mode is that it is almost purely 
growing at large tli,. There are very few resonant particles in this instance so that 
the kinetic integral is mostly real; however, its sign is such that it leads to nearly 
purely growing instabilities. On the other hand, at small ah the number of resonant 
particles increases and the energetic particle response becomes complex so that the 
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FIG. 4. Plot of yrnal = Im W/W~ as a function of di for the k = 0 mode with ah = 1.52 using the purely 
trapped distribution given in Eq. (22). 

FIG. 5. Plot of ymar = Im o/w,% and the negative of the real part of the frequency for the k = f mode 
using the trapped and circulating distribution given in Eq. (23), with d/z = 0.02, wdo/wA = 5, and cc, = 0. 
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mode frequency obtains a significant real part, with the frequency approaching 
-w,/2 as 01~ -+ 0. In this region, the k = + mode is similar in behavior to the k = 0 
mode discussed above. 

V. CONCLUSION 

In this paper we have developed numerical methods for solving the ballooning 
mode MHD equation when modified with the inclusion of trapped hot partlcies 
treated in the high bounce frequency limit. 

One of the novel aspects of the work was to show that in certain cases it is 
necessary to modify the conventional evanescent boundary conditions for the eigec- 
function and allow for exponentially growing waves at infinity. This arises in the 
following situation. As the magnitude of the poloidal angle /%I + E, the integrodif- 
ferential operator describing the mode becomes periodic in 6, allowing an 
asymptotic solution of the eigenfunction of the form 

$J 0) exp(ik%), 

where d,(6) is a periodic function. Now, suppose the asymptotic spatially periodic 
operator, denoted as @p(~), allows an unstable solution in w for real k. In Fig. 6b 
we indicate o(k) (for k real) by the solid curve between P, and P,. If we seek a dis- 
crete eigenvalue wO that lies underneath this curve, then the boundary conditions at 
large l%l restrict the choice of k so that it is amplifying in space (i.e., 6 Im k < 0). 
Usually, this choice also implies that 8 Re L’~ > 0 (c, SE group velocity), althougk this 
latter conclusion only strictly applies if IIm kl + IRe k[. 

If oO lies outside the curve w(k) (for k real) then the usual evanescent boundary 
condition applies for the eigenfunction (i.e., 9 lm k 3 0). From these observations it 
is clear that when searching for stability it is necessary to find parameters where the 
continuum mode is stable, i.e., Im o(k) < 0 for all real k. Only then is the discrete 
unstable spectrum guaranteed to have eigenfunctions that decay at infinity. 

In addition to establishing the boundary conditions, we have developed a new 
WKB technique for almost spatially periodic systems. This theory makes the search 
for eigenvalues more efficient as one then does not have to integrate from too large 
a value of % to find eigenfunctions and eigenvalues accurately. 

The detail method of solution of the integrodifferential equations governing hot 
particle ballooning modes is explained in detail in the text. Sample solutions are 
shown. The purpose of this paper was to discuss some of the rather novel numerical 
aspects of this problem. For a more detailed discussion of the physical aspects of 
the problem the reader is referred to Ref. [22]. 



30 STOTLERAND BERK 

APPENDIX: BOUNDARY CONDITIONS FOR WAVES IN 
SPATIALLY HOMOGENEOUS AND SPATIALLY PERIODIC EQUILIBRIA 

We wish to modify the theory of convective and absolute instabilities in a 
spatially homogeneous system [37,38] and extend the result to the response of 
waves in a periodic system. The purpose of this discussion is to understand the 
boundary condition needed for the integral equations examined in the text; this 
system asymptotically approaches one that can be described by an operator with 
periodic symmetry. 

We shall represent an operator characterizing the response to linear pertur- 
bations by the symbol fi~Y,,. In a spatially homogeneous system, this linear operator 
exhibits invariance to arbitrary space and time translations, so that 

6 .x+L.f+T = h,, (A.1) 

for arbitrary L and T. From this property it follows that the eigenfunctions for the 
system must be of the form 

exp[&x - iw(k) t], (A.21 

where k is real, and for a given k, multiple complex o(.k) exist. If Im o(k) > 0, 
the system is linearly unstable. We shall use the superscript SH (spatially 
homogeneous) to denote the class of operators satisfying Eq. (A.l). 

In periodic equilibria of period LO, the linear response operator (now denoted 
with a superscript SP for spatially periodic) has the symmetry property 

@P 
I + nLa,t + T (A.31 

for arbitrary T and any integer n. Given the symmetry shown in Eq. (A.3) it follows 
from Floquet theory that the eigenfunctions of 6;: are of the form 

#dx) =pCikx - hdk) tl, 64.4) 

where dk.Jx + L,) = $,Jx), k is real, and the n-index indicates the multiple values 
of 4,&x) and w,(k) for a given k. 

Now let us develop the theory for the response of a spatially homogeneous 
system to a localized source in a manner similar to that used in Ref. [38]. We need 
to obtain the asymptotic solution to the equation 

@~$(x, t) = S(x) H(t) exp( -iio,t); H(t)= 1, t>o 

= 0, t <o, 
(A.5) 
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for all m. By taking the spatial Fourier and the temporal Laplace transforms of 
Eq. (A.S), we find the solution 

where 

S(k) = lx d.x exp( -ikx) S(X), 
-* 

(A.7) 

DSH(k, w) = jox dt j-y, ds exp [ - iks + icot] 6::. 

C(o) is a contour in the o plane above all the zeros of the denominator which are 
w0 and w(k) with DSH(k, o(k)) = 0 (see Fig. 6). 

We shall assume that Im w(k) > 0 for some bands of k. The contour i?Cwjk))> 
shown in Fig. 6(a), is the map of real k onto the complex o plane in regions where 

FIG. 6. Original C(a) contour that must lie above o =v c o and w = w(k). The contour ?(WI 
represents w=w(kj for real k. In (a) wO lies outside c(o) and in (b) w0 lies inside c(o). The contour 

C”(w) is the contour of integration in Eq. (A.17). 
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Im w(k) > 0. The end-points P, and PI, at k = k, and k = k,, respectively, are where 
Im o(k,,,) = 0. Usually there are several such contours arising from bands of real k 
where Im o > 0. A frequent case is where o(k) = o( -k). In this case the two c(o) 
contours are identical, but as real k increases, one of the contours maps in the 
clockwise direction, while the other maps in the counterclockwise direction. In 
general, a given c(w) contour winds in either the clockwise direction or the 
counterclockwise direction. Now 

aD 

dcu ak 
~=~‘v”’ 

ao 

where vg is the group velocity, and Re 60 = Sk Re vg, where 6k and 6~ are 
incremental changes in o and k. Thus, as k increases, a clockwise (counter- 
clockwise) contour of c(w) has Re ug predominantly positive (negative). We shall 
assume that ug # 0 on C(o), with the possible exception of the end-points. 
However, Re vg can change sign. For example, if we assume c(o) in Fig. 6b is a 
clockwise contour, there is a small region where Re m(kZ) > Re o(k,) for k, > k,. 
Hence, though the predominant sign of Re v&is positive, in the region where Re o 
doubles back, Re ug < 0. We shall define sg( C) = 1 if the contour is clockwise and 
sg(c) = - 1 if the contour is counterclockwise. 

A frequency co0 is defined to be inside the bounter c(o) if it lies between c(w) 
and the real axis. Otherwise o0 is outside this contour. 

Suppose for definiteness that the contour c(o) is clockwise, and we distort w(k) 
to move inside the contour towards the real axis between PI and P,. Because of the 
clockwise assumption, c(o) goes from P, to P, and Re ug is predominantly 
positive. Now let w(k) -+ w(k) - is with E real. 6k, the change of k, is found from the 
dispersion relation as 

bk = -i&/v,, (A.8 1 

so that 

Im6k= -ARea,. (A.91 
l”gl 

From Fig. 6a it is clear that to go to the inside of c(w) requires E>O if Re u,>O 
(as then Re w increases with increasing k) and E < 0 if Re vg < 0 (as then Re o 
decreases with increasing k as illustrated by the small segment of the c(o) above 
w = w0 j. In any case, it follows from (A.9) that to go to the inside of c(w) requires 
Im 6k < 0. We further note that Im k cannot change sign inside c(o), for if at some 
point it did, such a point would be on c(o) as k is then real. Thus, all points inside 
a clockwise contour c(o) have Im k < 0. Similar arguments hold for counter- 
clockwise contours. Thus, we conclude that all k(w) points on the inside of 
clockwise (counterclockwise) z’(w) contours have Im kc0 (Im k >O) and produce 
spatial amplifications towards the positive (negative) x-direction. 
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Now, suppose o0 in Eq. (A.6) lies outside the contours I?,(U) (the subscript j 
specifies the set of possible contours) as shown in Fig. 6a. Then to evaluate the 
dominant response of Eq. (A.6) we bring the C-contour down to the real axis. In so 
doing we pass the poles at w = o0 and w = o,(k). where D(k, cc;i(k)) =O and 
Im o,(k) > 0. Thus, $(x, t) becomes 

r dk S(k) exp[ - io,(k) f + ikxj 
l? 

(w - uoj - DSH(k, Uj(k)) 
so 

+jj dk * J *S(k)exp[--?0r+ikx], 
real k G rfw) 27r (0 - 690) DSH(k, (ii) 

!A.iG) 

where C’(w) is on the real w-axis. The first and second terms have exponential fac- 
tors that amplify with time, while the last integral is bounded in time. Therefore, the 
last term can be ignored when compared with the other two. In the second term we 
make the dispersion transformation from k to w through the dispersion relation 
DSH(k, o) = 0 for k in the interval k, < k < k2;. Then using 

dw iTDSH(k, o(k)) 
x=- 

/ iiDSH(k, o(k)) 
Sk 1 &I) - 

the dominant temporal response to Eq. (A.101 can be written as 

$(x, tj = $,(x, tj + $&~,t) 

with 

iA.11) 

(A-12) 

In evaluating the first integral for x > 0 (x < 0), we need to distort the contour in 
the upper (lower) k plane towards infinity. As we distort we may encounter a pole 
at k = k, where P”(k,, oo) = 0. These poles give rise to spatially damped 
contributions to Eq. (A.12). Thus, assuming that S(k) has no singular points, we 
find 

$1(-Y f) = i c exp[ik,,-x - iuot] S(k,) sg(x) 

i dDSH(koj, 00) 
(xImk,>O) 

dk 

+I dk 
S(k) exp[ikx - ioot] 

Ck DSH(k, u,,) ’ 
(A.14; 
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where Ck contour is shown in Fig. 7 for x > 0; we have assumed possible non- 
analytic points at k = 0 and k = f k,. For this discussion we ignore the contribution 
from these nonanalytic points (although physically they may be quite important) 
and emphasize the pole contributions at k,. 

To evaluate $2(~~, t) we distort the o contour to the real axis. Since w0 is 
assumed to be outside c(o), there are no poles from o = u,, . However, we may 
encounter branch points where dDSH(kb, q,)/dk and DSH(kb, cob) vanish. If such 
points exist the c(o) contour cannot be completely deformed to the real o-axis, 
but must wind around the points wbj. Thus in Fig. 8a, the e(w) contour is distorted 
to be along the real axis, except where it needs to rise and fall to go around 
o = wbj. Then the typical response for t -+ co can be evaluated by integrating near 
the branch points obj by the method of stationary phase to give 

ti2(4 t) = c S(k,) exp[ikbjx - io,t] 
j (iD~,HD~Ht)1’2(Obj--o). (A.15) 

Thus, the characteristic response to $(x, t) for long times is 

I+&, t)=i c 
exp[ikojx - hot] S(k,) sg x 

j dDSH(k,, co,,) 
(xImko,>O dk 

+c 
S( kbj) exp [ ik,x - im, t] 

j [IiDz,H(k,, OIbj) DiH(kb, obij t] 1’2(~bj - ~0)’ 
(A.16) 

There are several important conclusions that follow from these results: 

(1) If m. is outside c(o), x Im kj > 0, which causes attenuation in the 
direction of increasing 1x1. 

FIG. 7. The contour Ck, distorted away from the real axis into the upper half-plane of x s- 0. 
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b 

FIG. 8. The distortion of the C?(O) contour where w is complex and k is real to the real o axis or to 
a steepest descent contour. In (a) wO lies outside c(w) and in ib) o,, lies inside C(O). 

(2) If ci(oj is a clockwise (counterclockwise) contour so that Re ilg is 
predominantly positive (negative) for real k Im k, -c 0 (Im k,> 0), it leads to 
amplification in the positive (negative) x-direction and decay in the negative 
(positive) x-direction. 

(3) The characteristic frequency response in Eq. (A.16) comes from the term 
with the largest Im CO. 

Now let us assume oO is inside some of the cJ(o) contours as shown in Fig. 6b. 
We evaluate as indicated above the contributions from those contours cj(.(o) in 
which oO is on the outside. The contributions in which wO is on the inside are 
evaluated as follows. We lower the appropriate cj(w) contours so that they pass 
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through all poles of o(k) but still lie above oO. The contribution to Eq. (A.6) from 
those contoursj with u)~ inside z’i(o) is 

do exp[ik(w) x- iot] S(k(o)) 
b+(xT t, = -F JQm) 271. aDSH(k(co) 0) 

ak ’ (m--o) 

+ i $1 g J”,,,,, 2 e;:;;)yys,‘“:~ I 2 0 
(A.17) 

where C;(w) is the dashed contour shown in Fig. 6b. It intersects the o-points at P, 
and P2 and lies inside the c(o) contour but above w = wo. In the first integral we 
have again transformed k -+ o through the relation DSH(k, co) = 0. 

We lower z;,(m) as before, but now we have the pole of w = o. to pick up as 
shown in Fig. Sb. The sign of the residue of this contribution is positive if ci(o) is 
clockwise and negative if the contour is counterclockwise. With further contour 
deformation we can write, for t,G(x, t), 

*(&t)=iC 
sg@j) SW,(wo)) 

j aDSH(kj(mo), 00) 
exp[ikj(oo) x-icoot] 

ak 

+^ 
J 

dk exp[ikx - io, t] S(k) 

realk g DSH(k 00) 

-F j+ gey;~((yj--;" S(k(w)) 

ak ’ ((--o) 

do exp[ikx - iwt] S(k) 

+ iJ1,,,k~s,,,,,~ DSH(k,oj(o-co,) ’ 
(A.18) 

where the C,!(w) contour is shown in Fig. 8b. Again, the last term can be neglected 
as t -+ co, and the next to last term is to be evaluated by the method of stationary 
phase. The second term is evaluated by deforming the path of integration, for x > 0 
(x < 0) in the upper (lower) k plane (as in Fig. 7 for, say, x > 0). The exponentially 
growing terms in (A.18) then become as t -+ cc 

+i C 
S(kj(wo))exp[ikj(oo)x-icoot] sgx 

j aDSH(kj(w,h 00) 
(xImkj>O) dk 

S(k,) exp[ik,,jx - io,t] 

+ 7 [iDz,H(k,, mbj) DzH:H(kbj> mbj) tl”‘(~~j- 00)’ 
(A.19) 
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Notice that certain members of the first term cancel the second term. Specifically, 
for, say, x > 0, the counterclockwise contours in the first term will have Sg cj = - 1 
and, from our previous discussion, it follows that Im kj > 0. These contributions will 
cancel with the second term, and only the contour contributions with sg(cj) = -t I 
persist in the first term. A similar cancellation occurs for x -=c 0. Now combining the 
result of Eqs. (A.16) and (A.19), the asymptotic time response as t -+ CC is 

*(x, f) 2 i 
sg x exp[&,(wO) x - iw,t] S(kj(w,)) 

aDSH(kj(oO), wO) 
ak 

+i c 
Sg X eXp[ikj(CSo) x - iwof] s(kjjO,jj 

C oooutsidei?,(m) 
I 

aDSH(kj(WO)5 wO) 

xlmko>O ak 

S(k,) exp[ik,,x- io,t] 
(A.20) 

In Eq. (A.20) we observe amplification of waves in the direction of the 
predominant sign of the group velocity associated with the contour c’(o)) if LLP~ is 
inside the c(o) contour, and attenuation of those waves if mD is outside of Fhe 
contour. 

Now, if we are given a frequency ajo, with Im o. > 0, we need to determine which 
of the k,, the zeros of D(k,, oo), are allowed as 1.~1 -+ CD. The choice x Im k, < 0 is 
the correct one if (w,, k,(o),)) lies inside a contour cj(u) and the choice 
x Im k,>O is the correct one if (Q~, k,(w,)) lies outside the contours cj(w). A 
point is inside (outside) a contour c-;(o) if, as we vary CO from o. to m. t- 6,: with 
0 < 7 < a, we follow kj(oo + &) and we cross the real k axis an odd (even) number 
of times. If (oo, kj(oo)) is inside the contour, x Re cg > 0 is guaranteed on the last 
crossing of the real k axis and there is a spatial wave amplification in the direction 
of the group velocity for o = wo. From our discussion it is also clear that if 
Im o(k) < 0 for all real k, and if Im o. > 0, we are outside z‘(o)). Then only those k., 
with x Im kj > 0 are correct; these are spatially attenuated waves. 

We wish to establish a similar criterion on the wavenumber k for the response of 
a localized source in a periodic system with period Lo. The critical point is tc show 
that the response function can be written in a manner similar to Eq. (A.6). The 
essential features are the poles at w = CI)~ and o = o(k), the continuum modes for 
real k. 

To demonstrate such characteristics we first need to discuss some properties of 
BsP We define for any linear operator x,t . 

Bzp(wj= lim -! ~ oc, T joT df exp(&) @T exp( - iot). (A-21) 
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The eigenfunctions dk,J,y) exp(&) with eigenvalue w,(k) satisfies the equation 

Plwdk))C~k,H(x) ew(ikx)l = 0, (A.22) 

where k is real. We also observe that o,(k) can be analytically continued into the 
complex plane by choosing k complex and finding the complex o-values that allow 
c$~,~(x) to be periodic. 

Now, let us consider the driven problem 

SF$tJ(x, t) = 3’(x) H(t) exp iw,t. 

By taking the time Laplace transform of this equation, we obtain 

(A.23) 

S(x) 
6:‘(o) $(x, 0) = i=, 

0 

(A.24) 

with 

$(x, cox. 051(5aro3 
4 23.76 0  TD 3i885 Tj
0  Tr ET
BT
0.8889 048
4 387.6 433.2  4082.T
BT
0.80 ) with 
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Equation (A.29) is then 

(A.31 j 

where n = (k- k,)/k,. The inverse of d,,,,(m, k,) is 

&lJw, k,) = dn,m’O’ kl) 
Dsp(w, k, j’ 

where Z,&O, k,) is the cofactor of d,,,,, and Dsp(o, k,) is the determinant of ii,,.,?. 
For w = o,,(k,), DSP(o,(k,), k,) = 0. 

The solution to Eq. (A.31) can the be written as 

lli k,+nko(W) = 
i 

1 ~,,.A4 S(k. + mko). 
Dsp(w, k)(o - wo) m 

(A,33) 

Thus, the solution to $(.x, t) is 

dm C,,, &,(oj S(k, + mk,j exp[ikx- iwt] 
Dsp(w, k,)(o> --coo) 

(..4:34) 

where C(o) is a contour in the upper half w-plane, as in Fig. 6, and recall 
k = nk, + k,. Assuming these are no poles associated with the cofactor &,,Ju), zhe 
analyticity properties of Eq. (A.34) are identical to the analyticity properties of 
Eq. (A.6). Hence, our conclusions regarding the amplification or decay of the 
solution for large 1x1 in the spatially pariodic case are completely identical to those 
for the spatially homogeneous case. 
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